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CHARGE SENSING VIA
SEMICONDUCTOR DEVICES



Site-binding model
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This model assumes the dielectric material constituting the gate oxide to be
amphoteric, meaning that the surface hydroxyl groups can be either neutral,
protonized (positively charged) or deprotonized (negatively charged), depending on
the pH of the solution. This idea was first applied to the electrolyte/insulator/silicon
(EIS) structures, and in particular to devices featuring SiO, as gate oxide. In particular,
the surface of SiO, becomes negatively charged when in contact with electrolyte
solutions with pH values higher than its point of zero charge (pH;,c = 2).
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Effect of charged molecules
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DNA molecules have negative charges in aqueous solution, while DNA binders have
positive charges and bind specifically to double-stranded DNA.

The charged molecules on the gate surface interact electrostatically with electrons in the
Silicon substrate through the thin gate insulator.

Dr. T. Sakata, Dr. Y. Miyahara, TMDU EE51s



The Grahame equation

The relationship between the surface potential Y, and the
surface charge density o, is given by the Grahame equation

o = +/8&,& kT cy sinh q;i;ui")

where k; denotes the Boltzmann constant, T the absolute
temperature, g the elementary charge, g, the permittivity of free
space, g, the dielectric constant of the aqueous solution, and ¢,
the ionic strength of the solution.

The modification of the surface charge density due to charged
molecules immobilized on the surface, influences the surface

potential and consequently the fiEeEIScEIS-effect on the SiO,/Si system.



Metal Oxide Semiconductor structure
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The applied bias between the gate and the substrate (V) can be divided into three

different components:

* Alinear potential drop that occurs across the gate oxide ().

* An exponential potential drop that occurs between the silicon/gate oxide
interface and the bulk semiconductor () and that can be described by
combining the Poisson equation with the Boltzmann statistic.

* A potential drop that compensates for the different work functions of the metal
and the semiconductor (®,,).

The three components of the potential drop can be related to the applied potential

Vg.gas follows: Determines the channel
Vog = ¢M_5]. Ty t @ conductivity by impacting the

concentration of electrons in the
EE515 conduction band 6



MOQOS structure
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When the Gate potential is made positive with respect to the Source and Bulk
(source is short-circuited with the bulk), electrons (negatively charged) are attracted
toward the silicon/gate oxide interface, while the hole carriers (positively charged)
are repelled from it.

If the gate bias is further increased, more minority carriers (electrons) are attracted
and eventually form a conducting layer, called Channel, that allows for the passage
of current, when a potential difference between the source and drain terminals is
applied.

The key parameter that quantifies the magnitude of the Gate voltage that needs to
be applied in order to create the Channel is the threshold voltage V;,,. The threshold
voltage is defined as the value of the gate—source voltage (V) for which the
conducting channel has just begun to connect the source and drain, allowing
significant current to flow. EE515



Polarization of MOSFET (n-type).V  and Vg,
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Provided that free carriers are present in the channel (Vi > V4, ), @ current
can flow from the source to the drain terminal when a source-drain voltage
Vs is applied. Depending on the applied V,_, we can distinguish two working

regions (linear and saturation):
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MOS-FET (Metal Oxide Semiconductor) Field-

effect transistor
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MOSFET transistor fabrication process
(simplified)

Silicon +Gate patterning

creation of highly doped + Oxide

source and drain regions
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M O S F ET “65 nm Transistor”

65 nm is the distance between
source and drain
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Schematic representation of an n-type MOSFET

The working principle of a MOSFET can be described by considering separately
the vertical and horizontal components of the electric field that can be applied
through the terminals. If we consider only the vertical component (gate and
bulk terminals), we have the so called two-terminal MOS structure.

EEgag 12



ION-SENSITIVE FIELDEFFECT
TRANSISTOR (ISFET) AND
CHEMICAL FIELD-EFFECT
TRANSISTOR (CHEMFET)



Electrolyte-insulator-silicon structure (EISFET)
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In the EISFET the gate metal is replaced by an agueous solution polarized by a
reference electrode. The gate oxide is, therefore, exposed to the liquid environment
and hydrated. This way, the biochemical event of interest occurring at the gate oxide
surface can directly modulate the channel conductivity.

As for the case of a MOSFET, the drain current I < is a unique function of the input
voltage V. ., provided that V¢ and V;,, are constant. In the case of the ISFET,
however, we need to consider an extra component that takes into account the ion
activity occurring in the electrolyte solution and the surface charge at the gate oxide
surface. The effect of this additional component results in a modification of V, that
demands a change of V¢ to maintain the same conduction characteristics in
absence such extra component.



Impact of ionic strength (concentration of ions

in solution)
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Higher ionic forces results in
a larger concentration of
positive ions in proximity of
the interface, which

translates in a higher
number of negative carriers

in the silicon channel, hence

higher conductivity of the
transistor
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pH sensing
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ISFET-BASED ANALYTICAL
SYSTEMS



Traditional applications for pH sensing semiconductor-based
microdevices

Extracellular ion pulses Physiological parameters
= T ﬁ
Cﬁ?M;; / .
i I = :J
Bergveld, Biomedical Engineering, i-STAT Abbott
vol. 19, 5, (1972)
pH sensor

Inherent scalability Temperature sensor
« Signal does not scale with the device size (W/L) (but SNR still does)

 Feature size scales down and complexity scales up at ever
decreasing costs (IC integration)

|:> Ideal sensor for massively parallel system
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Semiconductor-based analytical systems
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ISFETs structures
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Quantitative readout of nucleic acid
amplification
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Quantitative gPCR
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Toumazou et al. Nature Methods 10, 641-646, 2013.
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Guiducci, et. al, Nature Methods, News and Views, 2013
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« Same sensitivity than light-
based system (10 copies)

« Demonstrated on chambers of
a few microliters

« Large transistors (lower noise)
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Quantitative PCR
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Evaluation of integrated circuit sensitivity.

(a) Standard curves of GH1 gene generated from the on-chip pH-PCR and the conventional
fluorescence-based SYBR green PCR. Mean # s.d. of the threshold cycle (Ct) for the on-chip
pH-PCR (two independent experiments, total of 6—8 chips per dilution) and SYBR green—
based, tube-based PCR were plotted against log of copy number of genomic DNA.

(b) Standard curves of NAT2 gene generated from the on-chip pH-LAMP and the
fluorescence-based SYBR green g-LAMP method. Mean + s.d. of the threshold time for the
on-chip pH-LAMP (5 independent experiments) and the fluorescence-based q-LAMP (2
independent experiments, six replicates per dilution) were plotted against log of copy
number of genomic DNA.

Nat methods | VOL.10 NO.7 | JULY 2013 |
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DNA amplification in nanoliter chambers
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High-throughput sequencing and
quantitative PCR



Sequencing. Leveraging upscaling of transistors
arrays
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Reference: Rothberg et al., Nature 2011
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Emulsion PCR
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Non-optical NGS
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Rothberg et al., Nature, Vol. 475, 348-352, July 2011
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a) Schematic of a well on an ion sequencing chip. Clonal
DNA immobilized on a bead is extended by polymerase in
the presence of a pure solution of one nucleotide (here
'T'). Nucleotide incorporation releases a pyrophosphate
(PPi) and a hydrogen ion. The change in pH caused by
release of the hydrogen ion alters the surface potential of
the ion-sensitive metal oxide layer. This is converted to a
voltage signal by transistors. The wells are washed and
exposed sequentially to pure solutions of other
nucleotides. For comparison, in high-throughput
pyrosequencing, the pyrophosphate is converted to
chemiluminescence by an enzymatic cascade and
optically imaged. The size of the well relative to the bead
has been exaggerated, although each well contains a
single bead.

b) Evolution of ion sequencing chips. Increases in sensors
per chip can be achieved by (i) increasing the physical
area of the sensor array, (ii) reducing the number of
transistors per sensor, (iii) arranging the sensorsin a
hexagonal rather than rectilinear geometry and reducing
the well and bead size; (iv) reducing the size of the single
transistor.

Nature Biotechnology 29, 805-807 (2011) 32



Semiconductor-based sequencing

© Overcome issue of dead
fluorophores

© Highest throughput (8o Mb/h)

@ Long homopolymers difficult to

read

Table 1 Price comparison of benchtop instruments and sequencing runs

Approximate Minimum throughput

Platform List price  cost per run (read length) Run time Cost/Mb Mb/h
454 GS Junior  $108,000 $1,100 35 Mb (400 bases) 8h $31 4.4
lon Torrent PG

{314 chip) $80,49020 $225¢ 10 Mb {100 bases) 3h $22.5 3.3

(316 chip) $425 100 Mb? (100 bases) 3h $4.25 33.3

(318 chip) $625 1,000 Mb (100 bases) 3h $0.63 333.3
MiSeq $125,000 $750 1,500 Mb (2 = 150 bases) 27h $0.5 55.5

Mote pricing may vary between countries and/for sales territories. Instrument prices do not include service contracts.
Sample prices do not include the cost of generating the initial fragmented genomic DMA library with adaptors (an
additional cost of between $75-200 depending on method used). Cost per megabase assumes one sample and one
sample sequencing kit per run. Unless stated, pricing information is from the online supplement of ref. 3.

an Torrent PGM pricing from Invitrogen US territory website (httpfwww invitrogen.com/, accessed 21 February 2012).
EPrice includes lon Torrent PGM, server, OneTouch and OneTouch ES sample automation systems. “lon Torrent PGM prices
include chip and sample preparation kit. Cenfiguration used in this study.

N.J.Loman, Performance comparison of benchtop high-throughput
sequencing platforms, Nat Biotech, 2012
http://iontorrent.com/lomanpaper?CID=fl-lomanpaper

EEgag
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Sensing of molecular binding with EISFET



Sensing of DNA hybridization

A) C)
Ag/AGC!
@ with saturated KCIl solution
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_SiQ, = [
pWel

The shift of the threshold voltage (VT) is determined from the gate voltage
(VG)- drain current (ID) characteristics in a phosphate buffer solution.

An Ag/AgCl electrode with saturated KCl solution is used as a reference
electrode.

Dr. T. Sakata, Dr. Y. Miyahara, TMDU EE51s
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Effect of charged molecules
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DNA molecules have negative charges in aqueous solution, while DNA binders have
positive charges and bind specifically to double-stranded DNA.

The charged molecules on the gate surface interact electrostatically with electrons in the
Silicon substrate through the thin gate insulator.

Dr. T. Sakata, Dr. Y. Miyahara, TMDU EEs1sg 36



A) B)
12007 620
-®= Defore immobilization
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1000 T o P
T Ty 610 F ... Binding of DNA binder /X.,/
8001 (Hoechst 33258)
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Tahle 1. Base sequences for digonucleotide probes at the R3I530 locus of factor VI gene ™"
Locus Functian Sequence T.. [°C]
R3530 R3530-normal (M)
probe S-amine group-COACTACTGLGGCACET-3 (17 mer) 8D (T,
target S5-ACGIGCCCOGLTAGTGE-3 (17 mer)
R3 5300 -mutant (hA)
probe 5'-aminc group-CCACTACCAGGGCACGT-3' 117 mer) 37 (Tal
target 5-ACGTGLCCTGGTAGTGG-3 (17 mer)
M and M indicate normal (wild-type) and mutant allele-specific oligonucleotides, respectively. 7 shows the
melting temperature.

Dr. T. Sakata, Dr. Y. Miyahara, TMDU
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""Two terminal MOS. Measurement of DNA
hybridization

Nanomolar DNA concentrations can . B

be detected within minutes, and a _
single base mismatch within 12-mer ML I I dacn] ”’ﬁ*’%}““‘"""l
oligonucleotides can be I | | e

distinguished by using a differential
detection technique with two
sensors in parallel.

To explore the utility of this field-
effect sensor for detecting DNA in
solution, two sensors were first
functionalized with a PLL layer.

Next, the sensing area of one sensor
was functionalized with the 12-mer —
oligonucleotide A (sensor 1), and the
adjacent sensor was functionalized
with the unrelated 12-mer
oligonucleotide B (sensor 2).

S. Manalis, MIT



Two terminal MOS. Measurement of DNA

hybridization

1 } ™

S. Manalis, MIT
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Unwanted signals arose because the

surface potential is sensitive to
thermal fluctuations, drifts,
nonspecific binding, and changes in
electrolyte composition.

When oligonucleotide cA,

complementary to A, was injected,
the surface potentials of sensor 1 and
sensor 2 diverged. The sensors
showed a differential response of 3
mV for oligonucleotide cA and of 3
mV for the subsequent addition of cB

(Fig.b).

These observations demonstrate that a

differential field-effect sensor
configuration is able to measure the
sequence-specific formation of A— cA
and B—cB hybrids.

J. Fritz, PNAS 2004
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Differential analysis

The sensors were then mounted in a fluid cell. Solutions containing
various target DNA oligonucleotides were injected in succession,
and the surface potential of the sensors was measured.

SELECTIVITY: The addition of control solutions such as buffer or
oligonucleotide B generated similar signals from both sensors.

These signals arose because the surface potential is sensitive to
thermal fluctuations, drugs, nonspecific binding, and changes in
electrolyte composition.

DIFFERENTIAL ANALYSIS: However, because these unwanted signals
are similar for both sensors, they can be eliminated by taking the
differential response from the two sensors (sensor 1-sensor2).



EISCAP. Measurement of DNA hybridization
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